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Abstract
We studied the pure and dilute Baxter–Wu (BW) models using the Wang–
Landau (WL) sampling method to calculate the density-of-states (DOS). We
first used the exact result for the DOS of the Ising model to test our code. Then
we calculated the DOS of the dilute Ising model to obtain a phase diagram, in
good agreement with previous studies. We calculated the energy distribution,
together with its first, second and fourth moments, to give the specific heat and
the energy fourth order cumulant, better known as the Binder parameter, for the
pure BW model. For small samples, the energy distribution displayed a doubly
peaked shape, and finite size scaling analysis showed the expected reciprocal
scaling of the positions of the peaks with L. The energy distribution yielded
the expected BW α = 2/3 critical exponent for the specific heat. The Binder
parameter minimum appeared to scale with lattice size L with an exponent θB

equal to the specific heat exponent. Its location (temperature) showed a large
correction-to-scaling term θ1 = 0.248 ± 0.025. For the dilute BW model we
found a clear crossover to a single peak in the energy distribution even for small
sizes and the expected α = 0 was recovered.

PACS numbers: 05.10.Ln, 05.50.+q, 02.70.Rr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The two-dimensional Ising model has received such widespread attention as the paradigm
system for phase transitions, that one sometimes says that a certain system is the ‘Ising model’
of a class of problems. While it is clearly special, it is not the only two-dimensional model
of phase transitions with an exact expression for its free energy. Its critical behaviour is, in
fact, rather atypical relative to many other two-dimensional systems and even to the three-
dimensional Ising model, especially in the specific heat, where its critical exponent, α, is zero.
The nature of the corrections-to-scaling in the spin 1/2 Ising model is also very different to
that of many other interesting systems.

0305-4470/05/337253+15$30.00 © 2005 IOP Publishing Ltd Printed in the UK 7253
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Figure 1. The energy of a given configuration is the sum of all interacting triangles formed by
nearest neighbour spins.

Another spin system, now known as the Baxter–Wu (BW) model, was solved by Baxter
and Wu [1, 2]. Spins σi = ±1, are situated on the triangular lattice and interact via a three
spin interaction,

H = −J
∑

i,j,k

σiσjσk, (1)

where i, j and k are the vertices of a triangle as shown in figure 1. J > 0 is the ferromagnetic
coupling between nearest neighbour spins. The BW model exhibits a second order phase
transition with its critical temperature (Tc) given by 2J/kTc = ln(1 +

√
2) = 2.269 18 . . .

(the same numerical value as for the Ising model on the square lattice). The specific heat
critical exponent is equal to the correlation length exponent, α = ν = 2/3. Series-expansion
results [3] gave the conjectured magnetization exponent of β = 1/12 and a susceptibility
exponent of γ ≈ 1.17 [4]. The latter confirmed the prediction of γ = 7/6 from the well-
known scaling relation α + 2β + γ = 2 [5, 6]. Real space renormalization group methods
have also been used [7–9] to study the pure model, and the critical eigenvalues obtained
gave critical exponents consistent with series-expansion and exact results. An exact form for
BW corrections-to-scaling was found by Joyce [10] who conjectured that the spontaneous
magnetization varied as M = tβ(f0(t) + t2/3f1(t) + · · ·) with analytic functions f0, f1 of the
distance t = (T −Tc)/Tc. Adler and Stauffer confirmed this with series and metropolis Monte
Carlo estimates [11].

Dilute Ising models are also somewhat famous, but for rather different reasons, as they
have been the source of a great deal of controversy. Presumably because of the anomalous
specific heat structure in the pure case, numerical work in the dilute regime, especially near
the pure limit, is painful, and although a majority of authors (see, e.g., Roder et al [12]) have
claimed that the controversy is resolved in favour of SSL theory [13–15], more study is useful.

The annealed dilute BW model was studied by Kinzel, Domany and Aharony [16] who
showed from this exploration that its dominant critical behaviour is in the universality class
of the four state Potts model, although the Potts model has logarithmic correction terms for
this case. Domany and Riedel [17], argued the same for the pure BW model by means of
symmetries of the Landau–Ginzburg–Wilson Hamiltonian. (Note that there are first order
fixed points in the neighbourhood of these models). The quenched dilute BW model was
studied by Landau and Novotny [18], who found a substantial change in the critical behaviour
of the specific heat [19] for an impurity concentration of 1 − x = 0.1. They also conjectured
that the zero temperature threshold concentration above which no long-range order could be
seen was about xc � 0.71. (See also results from a cluster-algorithm study of this system [20].)
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More recent calculations [21, 22] showed that the value of xc is even higher (xc � 0.755), and
is bounded by x low

c = 0.710 ± 0.001 and x
high
c = 0.784 ± 0.004. This is substantially above

the value for Ising models where xc is simply the percolation threshold of the corresponding
lattice, which is rarely above 0.5.

Recently Wang and Landau [23, 24] proposed a very efficient algorithm for calculating
the density-of-states (DOS) (i.e. the degeneracy of any level in energy space), g(E), for Ising
models and some related systems. To explore the issues of both pure and dilute BW models
further, and to see how their different particulars of large α and corrections to scaling emerge
from the calculation of the DOS, we have chosen to apply the WL algorithm to both the pure
and quenched dilute BW models, and to study the behaviour of the energy distribution and
related moments [25, 26] using the simulated DOS. The DOS of the pure and dilute Ising
models was studied for comparison purposes.

In the next section we discuss the WL algorithm. In section 3 we present a comparison
of an exact calculation of the DOS for the Ising model [27] with simulations using WL and
give some results for the dilute Ising case. In section 4 we give in detail our results for the
pure BW model, and in section 5 the results for the dilute BW model are presented. Finally
we discuss the implications of our results in section 6.

2. The simulation method

Conventional Monte Carlo (MC) methods [28–30] generate the canonical energy distribution
at a given temperature T0. It is usually narrowly peaked around this temperature. The
need to perform multiple simulations in order to obtain thermodynamics in a large range
of temperatures requires a large computational effort. Other methods based on histogram
accumulation [26, 31] approximate the distribution by the energy histogram at T0. This
distribution can then be reweighted to give statistics at another temperature. The reweighted
distributions, however, are also restricted to a very narrow range of temperatures and suffer
from large statistical errors in their tails for temperatures far from T0. The broad histogram
method [32] calculates the DOS through the consideration of the average number of visits
to any two adjacent energy levels. Lee [33] offered the entropic sampling method using the
observation that if the transition probability between any two energy levels is proportional to
the ratio between the DOS of these levels, then a crude estimate to the DOS can be given when
sampling at infinite temperature.

Wang and Landau improved Lee’s method by introducing a modification factor which
together with generating a ‘flat’ histogram (we have used the condition |H(E)−〈H 〉|/〈H 〉 �
0.05 for any E), carefully controls the updating of the DOS. By dividing the energy space into
different segments, and performing an independent random walk in each segment, one can
generate very accurately, in a reasonable amount of CPU time, the DOS of the whole energy
space, thus obtaining the canonical distribution at any desired temperature.

3. Ising model results

3.1. The pure Ising model

We began by validating the accuracy of our implementation of the WL algorithm against exact
results for the Ising model on the square lattice with no impurities. A detailed comparison
was made for the case of L = 32. The partition function for the Ising model on a lattice of
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Figure 2. Critical line Tc(x) in the T–x plane of the dilute Ising model. Small energy
fluctuations for x � 0.8 make it hard to reliably determine TCmax . The asterisks represent
results from MC renormalization group calculations [37] and the solid line is the prediction
Tc(x) = {tanh−1[e−1.45(x−xc)]}−1, converging to the value of xc = pc = 0.593 [38].

length L can be written as a low temperature expansion

ZN = e2KN
∑

�

g�x
2�, (2)

where N = L × L is the number of spins, K = J/kT is the reduced inverse temperature
and x = e−2K is the low temperature variable. Each energy level can be labelled (relative to
the ground state energy −2JN ) by E� = 4J� (� = 0, 2, 3, . . . , N − 2, N), so that g� is its
corresponding DOS. Beale [27] used an extension of Onsager’s solution [34] to give the exact
expression for the partition function on a finite lattice [35], and extracted the DOS coefficients
from expansion (2). When we plotted our results on top of Beale’s expression for the case of
L = 32 we saw no deviations between the exact and the simulated data within the resolution
of the figure. The relative error between the exact and simulated data was also plotted and
was found to be three orders of magnitude smaller than the calculated DOS and two orders of
magnitude larger from the systematic error due to the choice of the final modification factor
ffinal = 0.001. This showed that the choice of this quite large ffinal was sufficient, so that
only a relatively small number of iterations was required for all the simulations performed
throughout this work.

Further results from the pure Ising simulations will be introduced for comparison purposes
in section 4.

3.2. The dilute Ising model

We continued the validation process by studying the dilute Ising model at a lattice size of
L = 22. The Hamiltonian for the dilute Ising model may be written as

H = −J
∑

i,j

εiεjσiσj , (3)

where the random disorder variables εi take the values 0 and 1, such that their configurational
average is equal to a dilution of 0 < x < 1. We considered the position of the specific heat
maxima, TCmax , for different nominal concentrations centred around the values x = 0.8, 0.9
and x = 0.95, as indicated in figure 2. It is clearly seen that for large concentrations (x � 0.9)
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Figure 3. The specific heat of the dilute Ising model for different concentrations on a L = 22
lattice. For x = 0.75 there is no pronounced peak present.

the circles tend to a continuously critical line, slightly shifted from the solid line. The shift is
a finite size effect due to the use of a small sample. For smaller concentrations there is a large
dispersion of the circles and the data are less reliable. As shown in figure 3, the specific heat
maximum becomes broader with decreasing concentration and is hard to locate precisely. The
reason for this is that when lowering the concentration isolated clusters which rarely interact
with each are formed, and hence energy fluctuations become smaller. For a concentration of
x = 0.75 these fluctuations are also nearly constant and therefore no pronounced peak can be
identified. It should be noted that presumably, when much larger samples would be used, a
pronounced peak should be clearly seen for concentration even lower than x = 0.75 (see, for
example, [36]). In the absence of analytic results, the location of our points close to earlier
estimates validates both our dilute code and our analysis methods.

4. The pure Baxter–Wu model

We calculated the DOS for the BW model using lattice sizes L ranging from 6 to 120, with
periodic boundary conditions being imposed. For each lattice size the data were collected
separately for each energy segment and then were combined to give the density of states for
the entire energy landscape. We averaged over nine different runs for L = 30, and saw that the
fluctuations were three orders of magnitude smaller than the measured quantity (ln g), so that
we neglected these fluctuations and for each lattice size we executed a single run per segment
only. By symmetry, for any state with negative energy, there exists a state with positive energy,
so that it was sufficient to carry out the random walk only for non-positive energies. (A similar
argument holds for the Ising model.) Plots of the internal energy, specific heat, free energy
and entropy are given in figure 4.

Early simulations [18] showed the formation and motion of domains around the
ferromagnetic and ferrimagnetic ground states, due to the special connectivity of the BW
model, causing low frequency large energy fluctuations. These fluctuations made the
impression that the system was in a metastable state, thus indicating a first order transition. In
figure 5 we examined the energy distribution at TCmax and found a doubly peaked curve
(see [39]). The system appears to fluctuate between these two peaks denoted by E−,
corresponding to an ‘ordered’ state (more negative) energy, incorporating small clusters,
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Figure 4. Calculation of thermodynamic functions for the pure BW model on an L = 54 lattice:
(a) internal energy, (b) specific heat, (c) entropy and (d) free energy. The specific heat displays a
very clear pronounced peak at the transition point.
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Figure 5. Critical distribution calculated at TCmax for the pure BW model. The lattice sizes are
denoted by arrows. The L = 120 data suffers from the systematic errors resulting from the DOS
calculations for large systems.

and E+, corresponding to a ‘disordered’ state energy incorporating large clustering. A plot
of the distribution for the Ising model both at T

Ising
Cmax

and at T BW
Cmax

shows clearly sharp single

peaks centred approximately at the critical energy Uc = −√
2J (figure 6). This supports the

uniqueness of the distributions in figure 5. The positions (energies) of the peaks are found
to scale with L−1 [39] as seen in figure 7, and are expected to eventually intersect for a large
enough sample.

A comparison between the DOS of the Ising model and the BW model (figure 8) shows
a significant difference between the two models. Although they have approximately the same
number of different energy levels (N −1 for Ising and N −3 for BW), the function ln g appears
to be concave everywhere in the interval [−2, 0] for the Ising model, while for the BW graph
this may not be so. This suggests an explanation for the appearance of the two peaks which is
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2J .
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energies are denoted by (�) and the ‘ordered’ energies by (◦).

also consistent with the fact that they have the same height: the condition that the distribution
will have extrema is satisfied by

d(ln g)/dE = 1/kT . (4)

If, at TCmax , equation (4) has locally, a solution f1(E) = E/kTCmax + C1 tangent to ln g at E−
and E+, and another solution f1(E) = E/kTCmax + C2 tangent to ln g at Uc(L) (at the shifted
critical energy, or the minimum between the peaks), then the distribution will have two peaks
with equal height satisfying

p(E−) = p(E+) = eC1 , (5)

as seen in figure 5. This is essentially a finite size effect and should be recovered by a large
enough sample, to give an ‘Ising like’ concave everywhere DOS function, and a single peaked
distribution as its consequence.
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Figure 9. Scaling of the specific heat maxima with the length L for the pure BW model. The
predicted Cmax(L) ∝ L behaviour is indicated by a solid line.

We further calculated the specific heat for each lattice size and then plotted its maximal
value Cmax versus L. We see in figure 9 a very nice agreement between the calculated data
and the second order ansatz Cmax(L) ∝ Lα/ν , with α/ν = 1, even for very small lattices
(L = 6).

Another quantity of interest was the so-called Binder parameter [40, 41]

B = 1 − 〈E4〉
3〈E2〉2

, (6)

where 〈· · ·〉 stands for the canonical thermal average. When we calculated the Binder parameter
(whose plot as a function of temperature is given in figure 10), we saw a sharp inverse peak
that usually occurs in first order transitions [25, 26]. Another manifestation of the strong finite
size effects is the very precise (though quite unreliable) estimate of Tc = 2.2696 ± 0.0004 to
the transition point we obtained, when performing first order finite size scaling theory to the
position of Bmin, TBmin .
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in the figure to display an inverse peak whose depth decreases as the system size increases. The
infinite volume upper bound B∞

min was estimated using first order scaling theory to Bmin(L).

Obviously, since the transition is continuous and therefore no ordered and disordered
states coexist at the transition point, the critical probability distribution in the infinite volume
limit is expected to be single peaked, causing Bmin to eventually vanish with some exponent
and the Binder parameter to take the trivial value of 2/3 also at the critical point. It was
therefore convenient to repeat finite size scaling for Bmin according to

Bmin = 2
3 − B0L

−θB/ν, (7)

where θB is an exponent yet to be determined. In figure 13 we see the variation of the inverse
distances t−1

Cmax
≡ (

TCmax − Tc

)−1
and t−1

Bmin
≡ (

TBmin − Tc

)−1
, corresponding to the positions of

the specific heat maxima and Binder parameter minima, respectively, with L. A least squares
fit gave a slope of 1.529 ± 0.039 for the specific heat temperature and 1.748 ± 0.025 for the
Binder parameter temperature. In accordance with [31]

TCmax = Tc + A0L
−1/ν(1 + A1L

−ω1 + · · ·), (8)

we use the analogy

TBmin = Tc + B0L
−1/ν(1 + B1L

−θ1 + · · ·), (9)

where ω1 and θ1 are correction exponents and A0, A1, B0 and B1 are amplitudes determined
from simulations. It is therefore evident that TBmin displays a large correction-to-scaling term
(θ1 � 0.25), in contrast to the resulting 1/ν scaling from the TCmax fit, which is in fair
agreement with the exact 3/2 value, and which is also consistent with the scaling of Cmax. It
is also evident, however, from figure 14 and equation (7), that α and θB have the same value.
Similar exact and simulational calculations of the Binder parameter for the Ising model on
the same temperature scale (figure 11) showed much broader and less deep minima at TBmin ,
suggesting that these minima vanish with an exponent θB larger than the BW exponent.

5. The dilute BW model

Let us consider now the ferromagnetic BW model with quenched impurities. The Hamiltonian
is given by
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H = −J
∑

i,j,k

εiεj εkσiσjσk. (10)

We studied systems with lengths L between 18 and 36. We kept concentrations of x = 0.8
for L = 18 and of x = 0.9, 0.95 and x = 0.97 for L = 33, fixed, and let them vary around
x = 0.9 for L = 33. The data for L = 24 were calculated for concentrations varied around
different values from x = 0.85 to x = 0.97. In figure 15 we compare the DOS of the pure
and dilute BW models. The apparent crossover to a manifestly clear second order transition
may give rise again to a concave ‘everywhere’ form of ln g, already seen for the Ising model
in figure 8. The energy levels differ now only in the amount of 2J and can take even or odd
values for the same lattice size, depending on the vacancy distribution. We then performed
a calculation similar to that made above for the dilute Ising model, of TCmax , to obtain the
Tc(x) critical line on a lattice with L = 24, and then fitted the high concentration data into
a continuous (dotted) line (figure 16). All the data except for the L = 18 with a vacancy
concentration of 0.2, which was, as for the dilute Ising model, unreliable because of relatively
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Figure 17. Finite size scaling of Cmax with L for the pure and dilute BW models. The data for the
dilute model reveal an α exponent close to zero.

high dilution, fell very well on the dotted line. This may suggest that the critical behaviour
is rather universal for large enough concentrations, because due to the special connectivity of
the BW model, one would expect smaller energy fluctuations and therefore a larger scatter of
data for large enough vacancy concentrations, whilst the dilute BW data seem to agree with
the dilute Ising data for concentrations of x � 0.9. Of course, in order to make definitive
statements about universality, larger samples would be needed than those used here.

We performed a rough finite size scaling for the specific heat maxima at a concentration
of x = 0.9, using the three points measured for L = 33 that were averaged and the other
data collected for fixed concentrations. Novotny and Landau [18] predicted α/ν � 0 for a
concentration of 0.9. Our results, presented in figure 17, also indicate, at least qualitatively,
a significant change in α. Since spatial correlations become smaller and hence ν becomes
smaller, the value of α substantially decreases, thus indicating an ‘Ising like’ singularity at
the finite lattice transition point. Moreover, the Harris criterion for the diluted case is hereby
confirmed. Another question of interest was the influence of vacancies on the nature of
the transition. In order to make a statement regarding this question we plotted in figure 18
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Figure 18. Critical energy distribution for various concentrations and critical temperatures,
calculated on an L = 24 lattice. The numbers in parenthesis denote: (1) x = 0.85; Tc = 1.749 26,
(2) x = 0.95; Tc = 1.933 79, (3) x = 0.97; Tc = 2.076 71 and (4) x = 1 (pure); Tc = 2.291 64.
The distribution is seen to become sharper and narrower when the concentration is reduced.

the energy distribution for different concentrations. We see clearly and unsurprisingly that
lowering the concentration causes the doubly peaked distribution to vanish and become a
singled peaked one with a narrower width centred away from Uc. It may then be plausible
to say that in contrast to energy fluctuations which become negligible at sufficiently low
concentrations, magnetic fluctuations increase with increasing dilution and the transition is
manifestly second order.

6. Conclusions

Our simulations have shown that the WL sampling is a very accurate algorithm. The
thermodynamic quantities resulting from the calculated g(E), which yield reasonable quality
critical data, provide good evidence for this.

Our results show that the pure Baxter–Wu model is strongly influenced by finite size
effects and corrections to scaling. The scaling of the specific heat maxima is in excellent
agreement with the second order form Cmax ∝ Lα/ν , even for small lattices, and no correction
terms are observed. The Binder parameter, however, displays large minima for small samples,
thus incorrectly could be thought of as a ‘first order’ scaling field. It is an ‘irrelevant’ field
in the sense that it gives no additional information about the universal exponent ν, but rather
vanishes with an exponent θB . This exponent is also evident in the Ising model and is
presumably larger for this model. The vanishing inverse peak in both models states that the
energy distribution approaches a delta function in the thermodynamic limit, although it is
essentially non-Gaussian. The doubly peaked shape of the latter is rather peculiar. One would
usually expect a single peaked distribution which becomes narrower, the closer to criticality
one is. This shape is essentially a finite size effect due to the large fluctuations between the
ferromagnetic and ferrimagnetic clusters formed in the vicinity of the transition point, and will
eventually vanish in the thermodynamic limit. The WL method is also very successful when
applied for the dilute BW model even for small lattices, both in terms of the critical isotherm in
temperature-concentration plane for a weak dilution, and probability distribution. A crossover
to a single peaked critical distribution is clearly seen when decreasing the concentration of
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spins, and a single peaked distribution is evident at a concentration of x = 0.85. This is a
result of the formation of isolated domains causing relatively small energy fluctuations around
the critical energy.

It would be interesting in the future to use larger lattices to confirm our explanations of the
finite size problems. The relatively high accuracy of the WL method for small dilute systems
could be applied in the future to study disorder in other models.
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